
UNCLASSIFLED
S C A C' ',K VAX 1 : 'A N 0 Ivi-L-b. J*611 o'I

REPORT DOCUM[NIATION PAGE l O'_..c

1.) RE P0; " I1#&?R1. GOV ACCESSION k- 3 RE(IPI~h S CATAOC ~~

Il't 4 , 7 1IL f.'Si'' 'TPE O REz' &,I PEA:0: COVE RED

Ad~a Compiler Vali~dat ion Surimary Report: TEl-LIUsm-, A Ane ' - iL(un 198Q

C-0 M)t 0rol 1 ) 'I t Z_ ic t! 'U ecn. A,:.l \~so .2, REtro PC; 0 LF

N1 7. ALTIC)RoS t Ch'IkA:l OF & i. k..E:P j,

Da yt or. , 0",US A

S9. PjRFORwjh ORVAhZA7I()h AND ADPLSS IC PAfAb' E.fbik'. 7~2 AS&
APLA & Wtk& Uh:i %jmERS

SWr ight -Paltterson AFB
SDa yt or, , O., U'SA

11 CO'RZLlh. C'FCE kkA' Ah: ADD4ESS 1?. RE[3F, D*
Ada Join~t Program Office If0 June 1988
Ur'ited States Dm~rtrnent of Defense L *~L

Was!%ingtor, DC 2 301-3061 _), [.

4 N : 10R .h A Eh hAIIs A:). S S (I 0, fle ret f r om C on Ir olir q Qfl, S E :; : '.IC ,A SS (C P r e~ r
U NC LA SSIFIEDP

Wricht-Patterso. APE:a7TA1 N B~h

Approved for p,,ub 'ic re2ease; distribution u-12ir-..ted.

UN LA S SFL D D
ELECTE

KEoI: (. I.naf onle.ese sof 'ree a, afn- f b, b o:. n,/-t

C ;ip .1er Va'.4 ia t on Ca pa b 1 it y, ACVC, Va :44da ti on 7 &st i mq, A -za
V~alidation Office, AVO, Ada Va2idation Faciaity, AVF, AE/~LSD
lp5A, A4-a zcint P:ograt, Office, A:P0

2C AES&kt I (Cotine on reverstpof ifnecessar, #,iaj(Pot*) b, b'ock nvumbef)

%ot orola ,DcL! t a Se rie s 1Te lceim2 A a , Vers ion 1 . 2, TE-LESOFT , %r igh t -Pat terson AE

M1otorolIa \'ME lIt a Ser ie s, Modc 1 2 616 under Motorola UNIX System V/68 , Re lease 3 (hcr ,t
to N(.68020 , imp Iernen t e on a Mot orolia mvmF I 33A-201 Board (bare mach -.:e (target)
ACVC 1.09

Dl) 1473 [07o 0, 1 oi:). eIt is mE~tmE
I~ NA C~ L~ 1-CA S 1I E D

SICUP]11 CL&kSSIF1CAIUCh 0; IMIS PA [(E aa?~iC



AVF Control Number: AVF-VSR-188.0389

88-02-1 1-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880610W1.09095
TEL.ESOFT

Motorola Delta Series TeleGen2 Ada, Version 1.2
Motorola VME Delta Series, Model 2616 to MC68020,

implemented on a Motorola MVME 133A-20 board

Completion of On-Site Testing:
16 June 1988

Prepared By:

Ada Validation Facility
ASD/SCEL

Wright-Patterson AFB OH 45 4 3 3-65 03

Prepared For: Acce&Io;I For
Ada Joint Program Cffice NTIS &

United States Department of Defense DTIC A3[
Washington DC 20301-3081 U, ;.:"d

J, Hc ,' G

/ ... . .. .. . i. . . . . . .

7' A 1... ,' o



Ada Compiler Validation Summary Report:

Compiler Name: Motorola Delta Series TeleGen2 Ada, Version 1.2

Certificate Number: 880610W1.09095

Host: Target:

Motorola VME Delta Series, MC68020, implemented on a

Model 2616 under Motorola MVME 133A-20 board
Motorola UNIX System V/68, bare machine

Release 3

Testing Completed 16 June 1988 Using ACVC 1.9

This report has teen reviewed and is approved.

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

--/ -i

Ada Validation Organization
Dr. John F. Kramer
institute for Defense Analyses
Alexandria VA 223?"

Acia Joint ?roqram O-fice
Dr. John Solomnnd
Director
Washington D.C. 20301

2



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . ... 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT . ...... .1-2
1.3 REFERENCES .............................. -3

1.4 DEFINITION OF TERMS ...... ............... .1-3

1.5 ACVC TEST CLASSES ....... ................ 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED ...... ............... .. 2-1
2.2 LMPLEMENTATION CHARACTERISTICS ... .......... .2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS ......................... 3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS .. ......... ... 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER ... ........ .. 3-2

3.4 WITHDRAWN TESTS ....... ................. .3-2
3.5 INAPPLICABLE TESTS ....... ................ 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-4

3.7 ADDITIONAL TESTING INFORMATION .... .......... .. 3-5
3.7.1 Prevalidation ................. 3-5
3.7.2 Test Method ....... .................. .3-5

3.7.3 Test Site ........ ................... .3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS



CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815"A.

This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard

must be implemented in its entirety, and nothing can be implemented that is

not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between implementations.

The Ada Standard permits some implementation dependencies--for example, the

maximum length of identifiers or the maximum values of integer types.

Other differences between compilers result from the characteristics of

particular operating systems, hardware, or implementation strategies. All

the dependencies observed during the process of testing this compiler are

given in this report.

The information in this report is derived from the test results produced

during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and

evaluating the results. T1he purpose of validating is to ensure conformity

of the compiler to the Ada Standard by testing that the compiler properly
implements Legal language constructs and that it identifies and rejects

illegal language constructs. The testing also identifies behavior that is

implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile

time, at link time, and during execution.

I-I



INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the

compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint

Program Office and administered by the Ada Validation Organization (AVO).

On-site testing was completed 16 June 1988 at San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,

this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not

represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada information Clearinghouse

Ada Joint Program 2ffice

OU SDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL

Wright-Patterson AFB OH 45433-6503

1-2



INTRODUCTION

Questions regarding this report or the validation test results should be
di-ected to the AVF listed above or to:

Ada Validation Organization

Institute for Defense Analyses
1801 North Beauregard Street

Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada

programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant Tr.e agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

1-3



INTRODUCTION

AV3 The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In thp context of this
report, a compiler is any language processor, including

cross-compiler,, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada

Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or conr.ains illegal or erroneous use of the

language.

1.: ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is

1-4



INTRODUCTION

passed if no errors are detect'd at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the

resulting compilation listing is examined to verify that every syntax or

semantic error in the test is detected. A Class B test is passed if every

illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and

executed. Each Class C test is self-checking and produces a PASSED,

FAILED, or NOT APPLICABLE message indicating the result when it is

executed.

Class D tests check the compilation and execution capacities of a compiler.

Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

permitted in a compilation or the number of units in a library--a compiler

may refuse to compile a Class D test and still be a conforming compiler.

T1herefore, if a Class D test fails to compile because the capacity of the

compiler is exceeded, the test is classified as inapplicable. If a Class D

test compiles successfully, it is self-checking and produces a PASSED or

FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,

or FAILED message when it is compiled and executed. However, the Ada

Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class

E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an

allowable reason.

Class L tests check that incomplete or illegal Ada programF involving
multiple, separately compiled units are detected and not allowe: to

execute. Class L tests are compiled separately and execution i attempted.

A Class L test passes if it is rejected at link time--that is, an atz.empt

to execute the main program must generate an error message before any

declarations in the main program or any units referenced by the main

program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, sunport

the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or

NOT APPLICABLE results. It also provides a set of identity functions used

to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to

check the contentr of text files written by some of the Class C tests fcr

chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that

are examined to verify that the units are operating correctly. If these

units are not operating correctly, then the validation is not attempted.

1-5



INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
thc implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is witndrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6



CHAPTER 2

CONI:GURATION INFORMATION

2.1 CONFI3URATION TEST'.D

Th1e candidate compilation system for this validation was tested under the
following configuration:

Compiler: Motorola Delta Series TeleGen2 Ada, Version 1.2

A7VC Version: 1.9

Cert'i4cate Number: 501W 00

Host Compute-:

Mac'hine: Motorola VME Delta Series. Model 26,6

COperating Svstem: MiotorclIa UND': System 7/68
Release -

'emorv Zize: 12 Mera:-,.tes

~ar et Corroiter:

Machine: 14C68&20, implemented on the Yotorola
MVME 133A-20 board

Operating System: bare macnine

Memory Size: 1 Megabyte

:ommunications Network: RS-232

2-1



CONFIGURATION INFORMATION

.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes if validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
ti differ. Class D .nd E tests specifically check for suoh implementation
differences. However, tests in other classes also characterize an
implementation. Tho tests demonstrate the following characteristics:

Capacit-e,.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits rested to 17
levels. It correctly processes a compilation containing 72
variables in the same declarative part. (See tests D55A23A..H (E

tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject unirersal integer
calculations having values thaw exceed SYSTEM.MAX 1NT. This
implementation processes 64 bit integer calculations. (See tests
D4AOOA, D4A002B, DMAOW0A, and D4AOO4B.)

Predefined types.

This implementation supports the additional predefined tyes
LONG INTEGER and LONGFLOAT in the package STANDARD. (See tests
B86001C and 386001D.)

Based literals.

An implementation is allowed to reject a based literel with a
value exceeding SYSTEM.MAX IMT durinE compilation, or it may raise
:TUMI EROR or CONSTRAINT ERROR during execution. Ttls
implementation raises NM[ERIC ERROR during execution. 'See test
E21i01A.)

Expression evaluation.

Apparently some default initialization expressions for record

components are evaluated before any value is checked to telong to
a component's subtype. (See test C32117A.)

Assignmcnts for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2



CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for extra range. (See test
C35903A.)

Apparently NUMERICERROR is raised when an integer literal operand

in a comparison test is outside the range of the base type. (See
test C45232A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand

in a membership test is outside 'he range of the base type. (See
test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand in a

fixed-point comparison or membership test is outside the range of

the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently

round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real

expressions is apparently round away from zero. (See test
:4AO1I4A.)

Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SvST&M.MAXINT. For this
implementation:

Declaration of an array type or subtype with more than
SYSTEM.MAX INT components raise3 NUMERICERROR only for a two-
dimensional array when the second dimension is the large number.

Otherwise, no exception is raised. (See test C36003A.)

No exception is raise! when 'LENGTH is applied to an array type
with INTEGEP'LAST + 2 components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST

raises no exception. (See test C52103X.)

2-3



CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST

components raises CONSTRAINTERROR when the length of a dimension
is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expressiun's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.

(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This imolementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
comoatible with the target's subtype. 'See test C52013A.)

Aggregates.

in the evaluation of a Multi -dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C41 320'A and C- 3207B.

in the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-4



CONFIGURATION INFORMATION

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported provided that the size specified is at least 16 bits.
(See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are supported provided that the
components are aligned on 16-bit boundaries. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE
is not supported for functions. (See tests LA3004A, LA3004B,

EA300C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

2-5



CONFIGURATION INFORMATION

The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101H, EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAMEERROR if file
input/output is not supported. This implementation exhibits this
behavior for SEQUENTIAL_10, DIRECTIO, and TEXT IO.

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations provided that the body is compiled before
any instantiations. (See tests CA1O12A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations provided that the body is compiled before
any instantiations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6



CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 423 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation and 174 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for ten tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SU.WARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A 9 C D L

Passed 105 1046 1447 17 12 115 2672

Inapplicable 5 5 406 0 6 1 423

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1



TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 494 536 245 166 98 141 326 132 36 232 3 73 2672

Inapplicable 14 78 138 3 0 0 2 1 5 0 2 0 180 423

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35904B C35A03E C35A03R C37213H
C37213J C37215C C37215E C37215G C37215H
C38102C C41402A C45332A C45614C A74106C
C87B04B C85018B CC1311B BC3105A AD1A01A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 423 tests were inapplicable for -he
reasons indicated:

C355081..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1). These
clauses are not supported by this implementation.

C35702A uses SHORTFLOAT which is not supported by this
implementation.

3-2



TEST INFORMATION

A39005B uses length clauses with SIZE specifications for
enumeration types which are not supported by this implementation.

A39005G uses a record representation clause which is not supported
by this implementation.

The following 14 tests use SHORTINTEGER, which is not supported
by this implementation:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D

C45231D and B86001D require a macro substitution for any
predefined integer types other than INTEGER, SHORT INTEGER, and
LONGINTEGER. This implementation does not support any such
types.

• C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this implementation.

* C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this
implementation.

C46014A and C4A012B expect code to be generated and executed for
operations which simply cause an exception and have no other
effect on the program. This implementation does not generate code
for such operations.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent cn the package
TEXTIO.

C96001A assumes that SYSTEM.TICK <= DURATION'SMALL.

3A2009C, CA2009F, BC3204C, and BC3205D contain instantiations of
generics in cases where the body is not available at the time of
the instantiation. This implementation creates a dependency on
the missing body so that when the actual body is compiled, the
unit containing the instantiation becomes obsolete.

CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this implementation.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this implementation.

3-3



TEST INFORMATION

AE2101H, EE2401D, and EE2401G use instantiations of package

DIRECT_10 with unconstrained array types and record types having

discriminants without defaults. These instantiations are rejected
by this implementaticn.

The following 174 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102C CE2102G..H(2) CE2102K CE2104A..D(4)
CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) CE2201F..G(2) CE2204A..B(2)
CE2208B CE2210A CE2401A..C(3) CE2401E..F(2)
CE2404A CE2405B CE2406A CE2407A
CE2408A CE2409A CE2410A CE2411A
AE3101A CE3102B EE3102C CE3103A
CE3104A CE3107A CE3108A..B(2) CE3109A
CE3110A CE3111A..E(5) CE3112A..B(2) CE3114A..B(2)
CE3115A CE3203A CE3301A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE3405A..D(4) CE3406A..D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..F(4) CE3410A
CE3410C..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..O(3) CE3706D CE3706F CE3804A..E(5)
CE3804G CE3804I CE3804K CE3804M
CE3805A..B(2) CE3806A CE3806D..E(2) CE3905A..C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

The following 201 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (114 tests) C45521L..Z (15 tests)

45524L..Z (15 tests) C145621L..Z (15 tests)
CL5641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and

3-4



TEST INFORMATION

confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for nine Class B tests, one Class C test, and
one Class E test.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B27005A BA3006A BA3006B BA3007B BA3008A
BA3008B BA3013A

The following tests need a 'PRAGMA LIST (ON);' added at the beginning of

the source file in order to have a complete source/error listing.

B28001R B28001V E28002D
C 45651A requires that the result of the expression in line 227 be in the
range given in line 228; however, this range excludes some acceptable
results. This implementation passes all other cbecks of this test, and the
AVO ruled the test is passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the Motorola Delta Series TeleGen2 Ada compiler was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Motorola Delta Series TeleGen2 Ada compiler using ACV

Version 1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a Motorola VME Delta Series, Model 2616 host
operating under Motorola UNIX System V/68, Release 3 and a MC68020 bare
machine target, implemented on a Motorola MVME 133A-20 board with a
standard MC68881 floating-point coprocessor. The host and target computers
were linked via RS-232.

A magnetic tape containing all tests except for withdrawn tests, tests
requiring unsupported floating-point precisions, and tests involving
unsupported file I/O features was taken on-site by the validation team for
processing. Tests that make use of implementation-specific values were
customized on site. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

3-5



TEST INFORMATION

The contents of the magnetic tape were not loaded directly onto the host
2omouter. The contents of the magnetic tape were initially loaded onto a
Sun-3. 7he files were remote copied, via the Network File System, from the
Sun-3 to the Motorola Delta Series, Model 2616.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the Motorola VME Delta Series, Model 2616, and all
executable tests were run on the target computer. Object files were linked

on the host computer, and executable images were transferred to the target
computer via RS-232. Results were transferred to the host computer via
RS-232 and were then remote copied back to the Sun-3 and printed.

To speed up the ACVC compiling and downloading process, the runtime and
ACVC support packages were partially linked to create a phantom load
module, and downloaded onto the target in a fixed memory location. When
eacn ACVC test was linked, the TELESOFT linker resolved any references to
the runtime and support routines into the phantom, and did not include
their code in the generated load module. This substantially reduced the
link time and resultant load module size. The loader, using its fast
checksum recovery mode, ensured that the phantom was intact prior to the
downloading and execution of each ACVC test.

The compiler was tested using command scripts provided by TELESOFT and
reviewed by the validation team. The compiler was tested using all default
option settings except for the following:

Class B tests

Option Effect

-c 20 Generate MC68020 code

-3 D See note below
-L Generate source/error listing
-V Specify amount of virtual space

Executable tests

0:tion Effect

-c 20 jen-rate MC68020 code

-0 D See note below
-a <filename> Use the additional options from the specified

linker options file.
-m Specify the name of the main unit
-V Specify amount of virtual space

3-6



TEST INFORMATION

Optimizer switch -0 D

The optimizer switch "-0 D" is equivalent to "-P -R -1 -A" which has

the following meaning:

Option Effect

-P One or more of the subprograms being optimized

may be called from parallel tasKs.
-R One or more of the subprograms interior to the

unit/collection being optimized could be called
recursively by an exterior subprogram.

-I Enables inline expansion of those subprograms
marked with an INLINE pragma or generated by

the compiler.
-A Enables automatic inline expansion of any

subprogram called from only one place, as well
as those marked with an INLINE pragma or
generated by the compiler.

Tests were compiled, linked, and executed (as appropriate) using a single
host and a single target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF. The

listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at San Diego CA and was completed on 16 June 1088.

3-7



APPENDIX A

DEILARATION OF CONFORMANCE

TELESOFT has submitted the following Declaration of

Conformance co~ncernin~g the Motorola Delta Series

Tele~en2 Ada compiler, Version 1.2.

A-1



DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: Motorola Delta Series TeleGen2 Ada
Version: 1.2

Host Architecture ISA: Motorola VMF Delta Series, Model 2616
OS & VER #: Motorola UNIX SYSTEM V/68, Release 3
Target Architecture ISA: Motorola VME 133A-20 (MC68020)
OS & VER #: bare machine

Implementor's Declaration

I, the undersigned, representing TELESOFT, have implemented no deliberate extensions to the
Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. 1
declare that TELESOFT is the owner of record of the Ada language oompilers listed above and, as
such, is responsible for mairtaining said compiler(s) In conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language compiler(s) listed
in this declaration shall be made only in the owner's corporate name.

' ., .' )._ Date;- ' -

...f TELESOFT
Raymond A. Parra, Director, Cointracts/Legal

Licensee's Declaration

Motorola, Inc. assures that all reasonable steps are taken by Motorola, Inc. to maintain the Ada
language compiler(s) listed above in conformance to ANS/MIL-STD-1815A and agrees to the
public disclosure of the final Validation Summary Report. Motorola, Inc. agrees to comply with
the Ada Joint Program Office policy on the use of the VALIDATED ADA certification mark.
Further, Motorola, Inc. declares that to the best of Its knowledge the Ada languagc compiler(s)
and their host/target configurations are in compliance with the Ada Language Standard
ANSI -STD- 1815A.

(VOTOROLA, INCORPOi;ATED -
Name and Title: k - _ Li , r-, ¢

qa~ e- 2E,. s DS/SI: 9S:ST GS, S7 -34"



APPENDIX B

APPENDIX F OF THE Ada STANDARD

-he only allowed implementation dependencies correspond to implementatio:-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on

representation clauses. The implementation-dependent characteristics of
the Motorola Delta Series TeleGen2 Ada compiler, Version 1.2, are described

in the following sections, which discuss topics in Appendix F of the Ada
Standard. Implementation-specific portions of the package STANDARD are
also included in this appendix.

package STANDAID is

type INTEGER is range -32768 .. 32767:

type LONGINTEGER is range -2147483648 .. 2147483E47;

type FLOAT is digits 6 range -1.9342BE+25 .. 1.03 28E25;

type .,ONG FLOAT is digits 15
range -2.57110067081438E+61 .. 2.5 10070SI3SE 6:

type SHORT FIXED is delta 2#1.0#E-15 range -1. .. 1.'-21'.0#E-:;
type FIXED is delta 2#1.0#E-31 range 1.0 ..

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 8400.;

end STPNDARD;

B-I



APPENDIX F

I. Predefined Pragma

pragma LIST(ON OFF):
It may appear anyv here a pragma is allowed. The pragma
has tne effect of generating the source compilation.
The listing will begin at the first pragma list(ON)
statement if no previous pragma list(OFF) statement
was encountered. Otherwise, the listing will begin
at the top of the source.

implementation Dependent Pragmas

pragma CO\LNIENT(<string literal>);
It may only appear within a compilation unit.
The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNA-ME(< subprogram name>, <string_literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface pragma
for the same <subprogram name>. The pragma linkname has the
effect of making stringliteral apparent to the linker.

pragma INTERRUPT(Function _Mapping):
It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,
or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are mace with a
reduced call overhead.

2. implemertation Dependent Attributes

There are no implementation dependent attributes.

3. Specification of Package SYSTEM

PACKAGE System IS

TYPE Address is Access Integer:
TYPE SubprogramValue is PRIVATE:

TYPE Name IS (TeleGen2);

B-2



APPENDIX F. Cont.

Systern Name CONSTANT name: Te~eGen2:

Sturage Unit CON'STANT :=
Nlemor% Size CONSTANT : 2 ** 31) -1:

-- 'vsrte rn-rDependent Named NumberE:

Min mt :CONSTANT :=-(2 31);
Max _lrt CONSTANT :(2 31) - 1:
Max _Digits :CONSTANT :~15.
Max _Mantissa: CONSTA.NT := 31;
Fine -Delta : CONSTANT := 1.0 / (2 **Max -Mantissa);
Tick : CONSTANT :=10.0E-3:

-- Other System- Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0 .. 63;

Max_-Object -Size : CONSTANT := Max _ Int:
Max _Record _Count : CONSTANT := Max _Int;
Max T ext _loCount : CONSTANT =Max _mt-1;
Max _Text Ic -Field : CONSTANT := 1000:

PRIV ATE
TYPE Subprogram -Value IS

RECORD
P roc addr :Address:
Static link :Address:
Global frame : Address:

END RECORD:

E ND s t e rr:

4. Restric-.ions on Representation Clauses

Thte Compiier supports the following representation clauses:

Length Clauses: for enumeration and derived integer types 'SIZE
attribute (LRM 13.2(a))

Length clauses: for access types 'STORAGE _ SIZE attritube (LRM13.2(b))
Length Clauses: for tasks types 'STOPLAGE _SIZE attribute (LRM 13.2(c))
Length clauses: for fixed point types 'SM1ALL attribute (LRMl3.2(d))
Enumeration clauses: for character and enumeration types othei than

character and boolean (LRM 13.3)

B-3



APPEN'DIX F, Cont.

Record representation clauses (LRNI 13.4)
Address Clauses: for objects and entries (LRM 13.5(a)(c))

This compijer does NOT support the following representation clauses:

Enumeration clauses: for boolean (LRM 13.3)
Address clauses for subprograms, packages, and tasks (LRM 13.5(b))

Note: The Delta,'E68k compiler contains a restriction that allocated
objects must have a minimum allocation size of IC bits.

5. Implementation dependent naming conventions

There are no implementation-generated names denoting
implementation dependent components.

6. Expressions that appear in address specifications are interpreted
as the first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types unless the
target type is an unconstrained record or array type.

S. 1 0 Package Characteristics

Instantiaions of DIRECT 10 and SEQUENTIAL 10 are supported with,
the following exceptions:

SUr.constrained array types.

" Unconstrainted types with discriminants without defauit
values.

" In DIRECT10 the type COUNT is defined as follow:

type COUNT is range 0..2 147 483 647:

" In TEXT10 tne type COUNT is defined as follows:

type COUNT is range 0..2 147 483 645;

B-4



APPENDLX F, Cont.

In TEXT 1O the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;

9. Definition of STANDARD

STANDARD is not an Ada package with a specification in our implementation. Our
compilation system does not compile any source corresponding to the predefined
package STANDARD. In fact. STANDARD cannot generally be written fully using
standard Ada because the defini,.ions of predefined numeric types like INTEGER and
FLOAT require specificAtion of properties that cannot be defined by means of Ada
type declarations. it would probably be more appropriate for the AVO to request
implementations to provide the names of all predefined numeric types and the values
of the'r various attributes instead of asking for some artificially constructed source
for STANDARD, especially since the predefined numeric types are the only
declarations of allowed variation within the package. The generation of package
STANDARD in our implementation is achieved by means of a special text file that
specifies the names and certain attribute values for the various numeric types
supported by the target configuration.

For this target system the numeric types and their properties are as follows:

Integer types:

INTEGER

size - 16
first = -32768

last -.- 32767

LONGINTEGER

size 32
first = -2147483648
last -- 2147483647

Floating-point types:

FLOAT

size = 32
digits = 6
ismall = 2.58494E-26

'large = 1.93428E-,-25

B-5



APPENDIX F, Cont.

machine radix = 2
machine mantissa = 24
rnachint en.=-
machine-emax = -127

LONGFLOAT

size = 64
digits = 15
'small 1.94469227433161E-62

'large - 2.57110087081438E-61
machine radix = 2
machine mantissa = 53
machine emin =-1021
machine-emax = -1023

Fixed-point types:

SHORTFLXED

size = 16
delta = 2=1.0=e-15
first = -1.00000
last = -1.0- 2=1.0 e-15

FIXED

size = 32
delta = 2=1.0=e-31
first = -1.00000
last = -1.0- 2;1.0-e-31

DURATION

size =32

delta = 2 I.0=e-14

first = -86400
last = -86400

B-6



APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names

before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGID1 (l..199 => 'A', 200 => '1')

Identifier the size of the
maximum input line length with
varying last character.

$BIG 1D2 (l..199 => 'A', 200 => '2')

Identifier the size of the
maximum input line length with
varying last character.

$BIG ID3 (l..100 1 102..200 => 'A', 101 = >3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (l..100 I 102..200 => 'A', 101 => '4')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT LIT (1.197 :> '0', 198..200 => "298")

An integer literal of value 298
with enough leading zeroes so

that it is the size of the

maximum line length.

C-I



TEST PARAMETERS

Name and Meaning Value

$BIGREAL_LIT (1..194 > '0', 195..200 => "69.0E")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRING1 (1 => '"', 2..101 => 'A', 102 > '"')
A string literal which when
catenated with BIG STRING2
yields the image of BIG IDI.

$BIGSTRING2 (1 > '"', 2-100 > 'A',
A string literal which when 101..102 => "I""")
catenated to the end of
BIGSTRING1 yields the image of
BIGIDI.

$BLANKS (1.180 > '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483645
A universal integer
literal whose value is
TEXTI.COUNT'LAST.

$FIELD LAST 1000
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

Z'LE_NAIMEWITH BADCHARS BAD-CHARSXII!@#$^&-Y
An external file name that
either contains invalid
characters or is too long.

FILE NAME WITH WILD CARD CHAR WILD-CHAR*.NAM
An external file name that
either contains a wild card
character or is too long.

tGREATERTHANDURATION 131_073.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2



TEST PARAMETERS

Name and Meaning Value

$GREATERTHANDURAT:ONBASELAST 10_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$IL-LErAL_E)XTERNAL_-FILE -NAME! 9ADCHAR"A'
An external file name whicn
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 (1..256 > 'A')
An external file name which
is too long.

$NTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESSTHAN DURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS TAN DURATION BASE FIRST -131_073.0

A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX DIG:S 7
Maximum digits supported for
flcating-point types.

$MAXIN LEN 200
Maximum input line length
permitted by the implementation.

$MAXINT 214 7 483647
A universal integer literal
whose value is SYSTEM.MAXINT.

SMAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

C-3



TEST PARAMETERS

Name and Meaning Value

$MAXLENINT BASED LITERAL (1-2 :> "2:", 3..197 => '0',
A universal integer based 198..200 => "11:"4
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

SMAXLEN REAL-BASED LITERAL (1.3 => "16:"", 4 196 => '0',
A universal real based literal 197..200 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRING LITERAL (1 => '"', 2-199 => 'A', 200 =>

A string literal of size
MAX INLEN, including the quote
characters.

$MIN INT -2147483648
A universal integer literal
whose value is SYSTEM.MIN INT.

$NAME NOSUCH TYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONGFLOAT, or LONGINTEGER.

$NEGBASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4



APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 27 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of

the form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a later

declaration.

E28005C: This test requires that "PRAGMA LIST (ON);" not appear in

a listing that has been suspended by a previous "PRAGMA LIST
(OFF),"; the Ada Standard is not clear on this point, and the matter
will be reviewed by the AJPO.

C3O004A: The expression in line 168 yields a value outside the
range of the target type T, but there is no handler for
CONSTRAINTERROR.

• C35502P: The equality operators in lines 62 and 69 should be

inequality operators.

* A35902C: The assignment in line 17 of the nominal upper bound of a

.Ixed-point type to an object raises CONSTRAINTERROR, for that
value lies outside of the actual range of the type.

* C35904A: The elaboration of the fixed-point subtype on line 28
wrongly rai.ses CONSTRAINTERROR, because its upper bound exceeds

that of the type.

• C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against that of
various types passed as actual generic parameters, may, in fact,
raise NJMERICERROR or CONSTRAINTERROR for reasons not anticipated
by the test.

D-1



WITHDRAWN TESTS

C35A03E and C35A03R: These tests assume that attribute 'MANTISSA
returns 0 when applied to a fixed-po-nt type with a null range, but

the Ada Standard does not support this assumption.

C37213H: The subtype declaration of SCONS in line 100 i

incorrectly expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT ERROR.

C37215C, C37215E. C37215G, and C37215H: Various discriminant

constraints are incorrectly expected to be incompatible with type

CONS.

C381020: The fixed-point conversion on line 23 wrongly raises
CONSTRAINTERROR.

C41402A: The attribute 'STORAGESIZE is incorrectly applied to an
object of an access type.

C45332A: The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS is FALSE. However, an
implementation may evaluate the expression correctly using a type

with a wider range than the base type of the operands, and
MACHINEOVERFLOWS may still be TRUE.

C45610C: The function call of IDENTINT in line 15 uses an argument
of the wrong type.

A741o6C, C85018B, C87BO4B, and CC1311B: A bound specified in a

fixed-point subtype declaration lies outside of that calculated for
the base type, raising CONSTRAINT ERROR. Errors of this sort occur
at lines 37 & 59, 142 & 143, 16 & 48, and 252 & 253 of the four

tests, respectively.

BC2105A: Lines 159 through 168 expect error messages, tyt these

lines are correct Ada.

ADIAG A: The declaration of subtype SN73S raises CONSTRAINT ERROR
for implementations which select INT'SIZE to 5e 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain the
wrong values.

CE3208A: This test expects that an attempt to open the default

output file (after it was closed) with mode IN FILE raises
NAMEERROR or USEERROR; by Commentary AI-00048, MODE_ERROR should

be raised.

D-2


